LiDAR Remote Sensing of Vegetation Biomass
نویسنده
چکیده
Accurate estimates of vegetation biomass are critical for calibrating and validating biogeochemical models (Hurtt et al. 2010), quantifying carbon fluxes from land use and land cover change (Shukla et al. 1990; Houghton et al. 2001), and supporting the United Nations Framework Convention on Climate Change (UNFCCC) program to reduce deforestation and forest degradation (Reducing Emissions from Deforestation and Forest Degradation) (Asner 2009). For instance, it was argued that at least half of the uncertainty in the estimates of emissions of carbon from land use change results from uncertain estimates of biomass density (Houghton 2005; Houghton et al. 2009). CONTENTS
منابع مشابه
Lidar Remote Sensing for Biomass Assessment
Optical remote sensing provides us with a two dimensional representation of land-surface vegetation and its reflectance properties which can be indirectly related to biophysical parameters (e.g. NDVI, LAI, fAPAR, and vegetation cover fraction). However, in our interpretation of the world around us, we use a three-dimensional perspective. The addition of a vertical dimension allows us to gain in...
متن کاملMapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data
Large-scale coastal reclamation has caused significant changes in Spartina alterniflora (S. alterniflora) distribution in coastal regions of China. However, few studies have focused on estimation of the wetland vegetation biomass, especially of S. alterniflora, in coastal regions using LiDAR and hyperspectral data. In this study, the applicability of LiDAR and hypersectral data for estimating S...
متن کاملMonitoring Forests: Parameters Estimation and Vegetation Classification with Multisource Remote Sensing Data
2 Acknowledgments 3 Table of contents 4 Chapter 1 Introduction 6 1.1 Thesis objectives, motivations and innovation 7 1.2 Materials and methods 15 1.2.1 The Sierra Nevada, U.S.A (study site 1) 16 1.2.2 The Alps, Bozen, Italy (study site 2) 16 1.2.3 Gola Rainforest National Park, Sierra Leone (study site 3) 17 1.3 Thesis outline 18 1.4 References 19 Chapter 2 – Remote sensing of forested landscap...
متن کاملImproving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR
The spatial distribution of plant diversity and biomass informs management decisions to maintain biodiversity and carbon stocks in tropical forests. Optical remotely sensed data is often used for supporting such activities; however, it is difficult to estimate these variables in areas of high biomass. New technologies, such as airborne LiDAR, have been used to overcome such limitations. LiDAR h...
متن کاملLidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales
Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites (1 m subplots an...
متن کاملEstimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada
Assessing biomass dynamics is highly critical for monitoring ecosystem balance and its response to climate change and anthropogenic activities. In this study, we introduced a direct link between Landsat vegetation spectral indices and ground/airborne LiDAR data; this integration was established to estimate the biomass dynamics over various years using multi-temporal Landsat satellite images. Ou...
متن کامل